TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.AvgPool3DGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/d80ffba9702dc19d1fac74fc4b766b3fa1ee976b/tensorflow/core/kernels/pooling_ops_3d.cc#L376-L450) assumes that the `orig_input_shape` and `grad` tensors have similar first and last dimensions but does not check that this assumption is validated. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
The product writes data past the end, or before the beginning, of the intended buffer.
Link | Tags |
---|---|
https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v6r6-84gr-92rm | exploit third party advisory patch |
https://github.com/tensorflow/tensorflow/commit/6fc9141f42f6a72180ecd24021c3e6b36165fe0d | third party advisory patch |