TensorFlow is an end-to-end open source platform for machine learning. The TFLite implementation of concatenation is vulnerable to an integer overflow issue(https://github.com/tensorflow/tensorflow/blob/7b7352a724b690b11bfaae2cd54bc3907daf6285/tensorflow/lite/kernels/concatenation.cc#L70-L76). An attacker can craft a model such that the dimensions of one of the concatenation input overflow the values of `int`. TFLite uses `int` to represent tensor dimensions, whereas TF uses `int64`. Hence, valid TF models can trigger an integer overflow when converted to TFLite format. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
The product performs a calculation that can produce an integer overflow or wraparound when the logic assumes that the resulting value will always be larger than the original value. This occurs when an integer value is incremented to a value that is too large to store in the associated representation. When this occurs, the value may become a very small or negative number.
Link | Tags |
---|---|
https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c84-4hx6-xmm4 | exploit third party advisory patch |
https://github.com/tensorflow/tensorflow/commit/4253f96a58486ffe84b61c0415bb234a4632ee73 | third party advisory patch |