CVE-2022-48629

Public Exploit
crypto: qcom-rng - ensure buffer for generate is completely filled

Description

In the Linux kernel, the following vulnerability has been resolved: crypto: qcom-rng - ensure buffer for generate is completely filled The generate function in struct rng_alg expects that the destination buffer is completely filled if the function returns 0. qcom_rng_read() can run into a situation where the buffer is partially filled with randomness and the remaining part of the buffer is zeroed since qcom_rng_generate() doesn't check the return value. This issue can be reproduced by running the following from libkcapi: kcapi-rng -b 9000000 > OUTFILE The generated OUTFILE will have three huge sections that contain all zeros, and this is caused by the code where the test 'val & PRNG_STATUS_DATA_AVAIL' fails. Let's fix this issue by ensuring that qcom_rng_read() always returns with a full buffer if the function returns success. Let's also have qcom_rng_generate() return the correct value. Here's some statistics from the ent project (https://www.fourmilab.ch/random/) that shows information about the quality of the generated numbers: $ ent -c qcom-random-before Value Char Occurrences Fraction 0 606748 0.067416 1 33104 0.003678 2 33001 0.003667 ... 253 � 32883 0.003654 254 � 33035 0.003671 255 � 33239 0.003693 Total: 9000000 1.000000 Entropy = 7.811590 bits per byte. Optimum compression would reduce the size of this 9000000 byte file by 2 percent. Chi square distribution for 9000000 samples is 9329962.81, and randomly would exceed this value less than 0.01 percent of the times. Arithmetic mean value of data bytes is 119.3731 (127.5 = random). Monte Carlo value for Pi is 3.197293333 (error 1.77 percent). Serial correlation coefficient is 0.159130 (totally uncorrelated = 0.0). Without this patch, the results of the chi-square test is 0.01%, and the numbers are certainly not random according to ent's project page. The results improve with this patch: $ ent -c qcom-random-after Value Char Occurrences Fraction 0 35432 0.003937 1 35127 0.003903 2 35424 0.003936 ... 253 � 35201 0.003911 254 � 34835 0.003871 255 � 35368 0.003930 Total: 9000000 1.000000 Entropy = 7.999979 bits per byte. Optimum compression would reduce the size of this 9000000 byte file by 0 percent. Chi square distribution for 9000000 samples is 258.77, and randomly would exceed this value 42.24 percent of the times. Arithmetic mean value of data bytes is 127.5006 (127.5 = random). Monte Carlo value for Pi is 3.141277333 (error 0.01 percent). Serial correlation coefficient is 0.000468 (totally uncorrelated = 0.0). This change was tested on a Nexus 5 phone (msm8974 SoC).

5.5
CVSS
Severity: Medium
CVSS 3.1 •
EPSS 0.01%
Affected: Linux Linux
Affected: Linux Linux
Published at:
Updated at:

References

Frequently Asked Questions

What is the severity of CVE-2022-48629?
CVE-2022-48629 has been scored as a medium severity vulnerability.
How to fix CVE-2022-48629?
To fix CVE-2022-48629, make sure you are using an up-to-date version of the affected component(s) by checking the vendor release notes. As for now, there are no other specific guidelines available.
Is CVE-2022-48629 being actively exploited in the wild?
It is possible that CVE-2022-48629 is being exploited or will be exploited in a near future based on public information. According to its EPSS score, there is a ~0% probability that this vulnerability will be exploited by malicious actors in the next 30 days.
What software or system is affected by CVE-2022-48629?
CVE-2022-48629 affects Linux Linux, Linux Linux.
This platform uses data from the NIST NVD, MITRE CVE, MITRE CWE, First.org and CISA KEV but is not endorsed or certified by these entities. CVE is a registred trademark of the MITRE Corporation and the authoritative source of CVE content is MITRE's CVE web site. CWE is a registred trademark of the MITRE Corporation and the authoritative source of CWE content is MITRE's CWE web site.
© 2025 Under My Watch. All Rights Reserved.