CVE-2022-48760

USB: core: Fix hang in usb_kill_urb by adding memory barriers

Description

In the Linux kernel, the following vulnerability has been resolved: USB: core: Fix hang in usb_kill_urb by adding memory barriers The syzbot fuzzer has identified a bug in which processes hang waiting for usb_kill_urb() to return. It turns out the issue is not unlinking the URB; that works just fine. Rather, the problem arises when the wakeup notification that the URB has completed is not received. The reason is memory-access ordering on SMP systems. In outline form, usb_kill_urb() and __usb_hcd_giveback_urb() operating concurrently on different CPUs perform the following actions: CPU 0 CPU 1 ---------------------------- --------------------------------- usb_kill_urb(): __usb_hcd_giveback_urb(): ... ... atomic_inc(&urb->reject); atomic_dec(&urb->use_count); ... ... wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0); if (atomic_read(&urb->reject)) wake_up(&usb_kill_urb_queue); Confining your attention to urb->reject and urb->use_count, you can see that the overall pattern of accesses on CPU 0 is: write urb->reject, then read urb->use_count; whereas the overall pattern of accesses on CPU 1 is: write urb->use_count, then read urb->reject. This pattern is referred to in memory-model circles as SB (for "Store Buffering"), and it is well known that without suitable enforcement of the desired order of accesses -- in the form of memory barriers -- it is entirely possible for one or both CPUs to execute their reads ahead of their writes. The end result will be that sometimes CPU 0 sees the old un-decremented value of urb->use_count while CPU 1 sees the old un-incremented value of urb->reject. Consequently CPU 0 ends up on the wait queue and never gets woken up, leading to the observed hang in usb_kill_urb(). The same pattern of accesses occurs in usb_poison_urb() and the failure pathway of usb_hcd_submit_urb(). The problem is fixed by adding suitable memory barriers. To provide proper memory-access ordering in the SB pattern, a full barrier is required on both CPUs. The atomic_inc() and atomic_dec() accesses themselves don't provide any memory ordering, but since they are present, we can use the optimized smp_mb__after_atomic() memory barrier in the various routines to obtain the desired effect. This patch adds the necessary memory barriers.

N/A
CVSS
Severity:
EPSS 0.17%
Affected: Linux Linux
Affected: Linux Linux
Published at:
Updated at:

References

Frequently Asked Questions

What is the severity of CVE-2022-48760?
CVE-2022-48760 has not yet been assigned a CVSS score.
How to fix CVE-2022-48760?
To fix CVE-2022-48760, make sure you are using an up-to-date version of the affected component(s) by checking the vendor release notes. As for now, there are no other specific guidelines available.
Is CVE-2022-48760 being actively exploited in the wild?
As for now, there are no information to confirm that CVE-2022-48760 is being actively exploited. According to its EPSS score, there is a ~0% probability that this vulnerability will be exploited by malicious actors in the next 30 days.
What software or system is affected by CVE-2022-48760?
CVE-2022-48760 affects Linux Linux, Linux Linux.
This platform uses data from the NIST NVD, MITRE CVE, MITRE CWE, First.org and CISA KEV but is not endorsed or certified by these entities. CVE is a registred trademark of the MITRE Corporation and the authoritative source of CVE content is MITRE's CVE web site. CWE is a registred trademark of the MITRE Corporation and the authoritative source of CWE content is MITRE's CWE web site.
© 2025 Under My Watch. All Rights Reserved.