CVE-2022-49812

bridge: switchdev: Fix memory leaks when changing VLAN protocol

Description

In the Linux kernel, the following vulnerability has been resolved: bridge: switchdev: Fix memory leaks when changing VLAN protocol The bridge driver can offload VLANs to the underlying hardware either via switchdev or the 8021q driver. When the former is used, the VLAN is marked in the bridge driver with the 'BR_VLFLAG_ADDED_BY_SWITCHDEV' private flag. To avoid the memory leaks mentioned in the cited commit, the bridge driver will try to delete a VLAN via the 8021q driver if the VLAN is not marked with the previously mentioned flag. When the VLAN protocol of the bridge changes, switchdev drivers are notified via the 'SWITCHDEV_ATTR_ID_BRIDGE_VLAN_PROTOCOL' attribute, but the 8021q driver is also called to add the existing VLANs with the new protocol and delete them with the old protocol. In case the VLANs were offloaded via switchdev, the above behavior is both redundant and buggy. Redundant because the VLANs are already programmed in hardware and drivers that support VLAN protocol change (currently only mlx5) change the protocol upon the switchdev attribute notification. Buggy because the 8021q driver is called despite these VLANs being marked with 'BR_VLFLAG_ADDED_BY_SWITCHDEV'. This leads to memory leaks [1] when the VLANs are deleted. Fix by not calling the 8021q driver for VLANs that were already programmed via switchdev. [1] unreferenced object 0xffff8881f6771200 (size 256): comm "ip", pid 446855, jiffies 4298238841 (age 55.240s) hex dump (first 32 bytes): 00 00 7f 0e 83 88 ff ff 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000012819ac>] vlan_vid_add+0x437/0x750 [<00000000f2281fad>] __br_vlan_set_proto+0x289/0x920 [<000000000632b56f>] br_changelink+0x3d6/0x13f0 [<0000000089d25f04>] __rtnl_newlink+0x8ae/0x14c0 [<00000000f6276baf>] rtnl_newlink+0x5f/0x90 [<00000000746dc902>] rtnetlink_rcv_msg+0x336/0xa00 [<000000001c2241c0>] netlink_rcv_skb+0x11d/0x340 [<0000000010588814>] netlink_unicast+0x438/0x710 [<00000000e1a4cd5c>] netlink_sendmsg+0x788/0xc40 [<00000000e8992d4e>] sock_sendmsg+0xb0/0xe0 [<00000000621b8f91>] ____sys_sendmsg+0x4ff/0x6d0 [<000000000ea26996>] ___sys_sendmsg+0x12e/0x1b0 [<00000000684f7e25>] __sys_sendmsg+0xab/0x130 [<000000004538b104>] do_syscall_64+0x3d/0x90 [<0000000091ed9678>] entry_SYSCALL_64_after_hwframe+0x46/0xb0

N/A
CVSS
Severity:
EPSS 0.02%
Affected: Linux Linux
Affected: Linux Linux
Published at:
Updated at:

References

Frequently Asked Questions

What is the severity of CVE-2022-49812?
CVE-2022-49812 has not yet been assigned a CVSS score.
How to fix CVE-2022-49812?
To fix CVE-2022-49812, make sure you are using an up-to-date version of the affected component(s) by checking the vendor release notes. As for now, there are no other specific guidelines available.
Is CVE-2022-49812 being actively exploited in the wild?
As for now, there are no information to confirm that CVE-2022-49812 is being actively exploited. According to its EPSS score, there is a ~0% probability that this vulnerability will be exploited by malicious actors in the next 30 days.
What software or system is affected by CVE-2022-49812?
CVE-2022-49812 affects Linux Linux, Linux Linux.
This platform uses data from the NIST NVD, MITRE CVE, MITRE CWE, First.org and CISA KEV but is not endorsed or certified by these entities. CVE is a registred trademark of the MITRE Corporation and the authoritative source of CVE content is MITRE's CVE web site. CWE is a registred trademark of the MITRE Corporation and the authoritative source of CWE content is MITRE's CWE web site.
© 2025 Under My Watch. All Rights Reserved.