In the Linux kernel, the following vulnerability has been resolved: ALSA: sh: aica: reorder cleanup operations to avoid UAF bugs The dreamcastcard->timer could schedule the spu_dma_work and the spu_dma_work could also arm the dreamcastcard->timer. When the snd_pcm_substream is closing, the aica_channel will be deallocated. But it could still be dereferenced in the worker thread. The reason is that del_timer() will return directly regardless of whether the timer handler is running or not and the worker could be rescheduled in the timer handler. As a result, the UAF bug will happen. The racy situation is shown below: (Thread 1) | (Thread 2) snd_aicapcm_pcm_close() | ... | run_spu_dma() //worker | mod_timer() flush_work() | del_timer() | aica_period_elapsed() //timer kfree(dreamcastcard->channel) | schedule_work() | run_spu_dma() //worker ... | dreamcastcard->channel-> //USE In order to mitigate this bug and other possible corner cases, call mod_timer() conditionally in run_spu_dma(), then implement PCM sync_stop op to cancel both the timer and worker. The sync_stop op will be called from PCM core appropriately when needed.
The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer.