CVE-2025-38016

HID: bpf: abort dispatch if device destroyed

Description

In the Linux kernel, the following vulnerability has been resolved: HID: bpf: abort dispatch if device destroyed The current HID bpf implementation assumes no output report/request will go through it after hid_bpf_destroy_device() has been called. This leads to a bug that unplugging certain types of HID devices causes a cleaned- up SRCU to be accessed. The bug was previously a hidden failure until a recent x86 percpu change [1] made it access not-present pages. The bug will be triggered if the conditions below are met: A) a device under the driver has some LEDs on B) hid_ll_driver->request() is uninplemented (e.g., logitech-djreceiver) If condition A is met, hidinput_led_worker() is always scheduled *after* hid_bpf_destroy_device(). hid_destroy_device ` hid_bpf_destroy_device ` cleanup_srcu_struct(&hdev->bpf.srcu) ` hid_remove_device ` ... ` led_classdev_unregister ` led_trigger_set(led_cdev, NULL) ` led_set_brightness(led_cdev, LED_OFF) ` ... ` input_inject_event ` input_event_dispose ` hidinput_input_event ` schedule_work(&hid->led_work) [hidinput_led_worker] This is fine when condition B is not met, where hidinput_led_worker() calls hid_ll_driver->request(). This is the case for most HID drivers, which implement it or use the generic one from usbhid. The driver itself or an underlying driver will then abort processing the request. Otherwise, hidinput_led_worker() tries hid_hw_output_report() and leads to the bug. hidinput_led_worker ` hid_hw_output_report ` dispatch_hid_bpf_output_report ` srcu_read_lock(&hdev->bpf.srcu) ` srcu_read_unlock(&hdev->bpf.srcu, idx) The bug has existed since the introduction [2] of dispatch_hid_bpf_output_report(). However, the same bug also exists in dispatch_hid_bpf_raw_requests(), and I've reproduced (no visible effect because of the lack of [1], but confirmed bpf.destroyed == 1) the bug against the commit (i.e., the Fixes:) introducing the function. This is because hidinput_led_worker() falls back to hid_hw_raw_request() when hid_ll_driver->output_report() is uninplemented (e.g., logitech- djreceiver). hidinput_led_worker ` hid_hw_output_report: -ENOSYS ` hid_hw_raw_request ` dispatch_hid_bpf_raw_requests ` srcu_read_lock(&hdev->bpf.srcu) ` srcu_read_unlock(&hdev->bpf.srcu, idx) Fix the issue by returning early in the two mentioned functions if hid_bpf has been marked as destroyed. Though dispatch_hid_bpf_device_event() handles input events, and there is no evidence that it may be called after the destruction, the same check, as a safety net, is also added to it to maintain the consistency among all dispatch functions. The impact of the bug on other architectures is unclear. Even if it acts as a hidden failure, this is still dangerous because it corrupts whatever is on the address calculated by SRCU. Thus, CC'ing the stable list. [1]: commit 9d7de2aa8b41 ("x86/percpu/64: Use relative percpu offsets") [2]: commit 9286675a2aed ("HID: bpf: add HID-BPF hooks for hid_hw_output_report")

N/A
CVSS
Severity:
EPSS 0.02%
Affected: Linux Linux
Affected: Linux Linux
Published at:
Updated at:

References

Frequently Asked Questions

What is the severity of CVE-2025-38016?
CVE-2025-38016 has not yet been assigned a CVSS score.
How to fix CVE-2025-38016?
To fix CVE-2025-38016, make sure you are using an up-to-date version of the affected component(s) by checking the vendor release notes. As for now, there are no other specific guidelines available.
Is CVE-2025-38016 being actively exploited in the wild?
As for now, there are no information to confirm that CVE-2025-38016 is being actively exploited. According to its EPSS score, there is a ~0% probability that this vulnerability will be exploited by malicious actors in the next 30 days.
What software or system is affected by CVE-2025-38016?
CVE-2025-38016 affects Linux Linux, Linux Linux.
This platform uses data from the NIST NVD, MITRE CVE, MITRE CWE, First.org and CISA KEV but is not endorsed or certified by these entities. CVE is a registred trademark of the MITRE Corporation and the authoritative source of CVE content is MITRE's CVE web site. CWE is a registred trademark of the MITRE Corporation and the authoritative source of CWE content is MITRE's CWE web site.
© 2025 Under My Watch. All Rights Reserved.